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According to the requirements of the increasing development for optical transmission systems, a novel construction 

method of quasi-cyclic low-density parity-check (QC-LDPC) codes based on the subgroup of the finite field multipli-

cative group is proposed. Furthermore, this construction method can effectively avoid the girth-4 phenomena and has 

the advantages such as simpler construction, easier implementation, lower encoding/decoding complexity, better girth 

properties and more flexible adjustment for the code length and code rate. The simulation results show that the error 

correction performance of the QC-LDPC(3 780,3 540) code with the code rate of 93.7% constructed by this proposed 

method is excellent, its net coding gain is respectively 0.3 dB, 0.55 dB, 1.4 dB and 1.98 dB higher than those of the 

QC-LDPC(5 334,4 962) code constructed by the method based on the inverse element characteristics in the finite field 

multiplicative group, the SCG-LDPC(3 969,3 720) code constructed by the systematically constructed Gallager (SCG) 

random construction method, the LDPC(32 640,30 592) code in ITU-T G.975.1 and the classic RS(255,239) code 

which is widely used in optical transmission systems in ITU-T G.975 at the bit error rate (BER) of 10-7. Therefore, the 

constructed QC-LDPC(3 780,3 540) code is more suitable for optical transmission systems.  
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With the increasing development of optical transmission 

systems towards longer distance, larger capacity and 

higher bit rate, the further improvements of the transmis-

sion rate and distance are heavily limited due to the accu-

mulated optical effects, such as the dispersion, polarization 

mode dispersion (PMD) and the accumulated nonlinear 

optical effects, such as four-wave mixing (FWM), 

stimulated Raman scattering (SRS) and stimulated Bril-

louin scattering (SBS) in transmission optical fibers[1,2]. 

As a result, it has been becoming necessary to develop a 

more powerful forward error correction (FEC) code type 

in order to gain higher net coding gain (NCG) and better 

error correction performance. Because of stronger error 

correction ability and lower complexity, low density par-

ity check (LDPC) code has become a research focus in 

the optical fiber transmission systems[3-5]. 

In recent years, LDPC codes in the quasi-cyclic (QC) 

form have been deeply investigated. A number of QC 

-LDPC codes have been constructed and shown to have 

the good error performance[4,6,7]. QC-LDPC codes are a 

kind of LDPC codes whose sub-matrix of check matrix 

H is a circulant permutation matrix (CPM) or zero matrix. 

Based on the unique structure of QC-LDPC codes, the 

computational complexity and memory cost of encoding 

can be efficiently reduced[7,8]. The design method of 

QC-LDPC code based on the finite field is proposed in 

Refs.[9] and [10] which show that the QC-LDPC codes 

have better error correction performance. The key of the 

method to construct a check matrix H based on the 

multiplicative group of the finite field is how to construct 

the basic matrix W[11]. 

According to the characteristics of optical transmis-

sion systems, a novel construction method of the basic 

matrix for constructing QC-LDPC codes based on the 

subgroup of the finite field multiplicative group is pro-

posed and studied in this paper. The QC-LDPC code 

with greater code length, higher code rate and the girth at 

least 6 can be flexibly constructed by this novel method. 

Furthermore, the QC-LDPC(3 780,3 540) code with code 

rate of 93.7% constructed by the novel method has better 
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error correction performance over the additive white 

Gaussian noise (AWGN) channel by applying the 

sum-product decoding algorithm.  

Consider the finite field as GF(q)[12], where q is a 

prime or the power of a prime. Let α be a primitive ele-

ment of the GF(q), then set { }- 0 1 2

0, 1, , ,
qα α α α∞ −≡ = …  

to give all elements of GF(q), and -1

1
qα = . All non-zero 

elements of GF(q) constitute the multiplicative group of 

a finite field. For each non-zero element iα  with 

0 2i q≤ ≤ − , form a (q-1) tuple vector over GF(2), 

0 1 2
( ) ( , , , , , )i

i q
z z z zα −= … …Z , where the ith component 

z i =1, while all other components are equal to 0. The 

(q-1) tuple vector ( )iαZ  is called as the M location 

vector of iα , where “M” stands for “multiplicative”. 

The M location vector Z(0) of 0 element is defined as the 

all zero (q-1) tuple (0,0,…,0).    

Let β  be an element of GF(q), then the M location 

vector ( )αβZ  of αβ  is the right cyclic shift (one 

place to right) of the M location vector ( )βZ  of β . 

Constituting a (q-1)×(q-1) matrix A with the M location 

vector of β , αβ ,…, 2qα β−  serve as its consecutive 

rows. Hence if 0β = , A is a (q-1)×(q-1) zero matrix, 

or if 0β ≠ , A is a circle permutation matrix, each row 

of which is the right cyclic shift of the row above it and 

the first row is the right cyclic shift of the last row. The 

(q-1)×(q-1) matrix A is called as the binary dispersion 

matrix of β . 

The structure of the check matrix can seriously affect 

the performance of QC-LDPC codes, and the basic char-

acteristic of the constructed QC-LDPC code is deter-

mined by the construction of its parity check matrix H. 

The method to construct a QC-LDPC code based on fi-

nite field is mainly divided into two steps: Firstly, con-

struct a basic matrix W; Secondly, expand the basic ma-

trix by (q-1)-fold vertical expansion and (q-1)-fold 

horizontal expansion. In fact, those two expansions can 

be regarded as replacing each element of the basic matrix 

W by its own binary dispersion matrix
( )i, jw

A  and then 

get the check matrix H.   

Let α be a primitive element of GF(q), q=2s , where s is a 

positive integer, then set { }- 0 1 2

0, 1, , ,
qα α α α∞ −≡ = …  to 

give all elements of GF(q). Assuming that c and m are two 

distinct multiplication factors of (q-1), let ( -1)/q cβ α= , 
( -1)/q mγ α= . Obviously, β  and γ  are also two dispa-

rate elements of GF(q). Let { }0 1 1

1 , , ,
c

G β β β −= …  and 

{ }0 1 1

2 , , ,
m

G γ γ γ −= …  be two different subgroups of the 

multiplicative group over GF(q), furthermore, it is clear 

that { }1 2 1G G =∩ . And then form a r l×  basic matrix 

W over GF(q), where ,r m l c≤ ≤ . For any 0 1i r≤ ≤ − , 

0 1j l≤ ≤ − , the element of the basic matrix is 
,i j

w , and 

define 
,i j

w  as i jγ β+ . The construction of the basic 

check matrix W is shown as follows. 

0 0 0 1 0 1

0

1 0 1 1 1 1

1

1 0 1 1 1 1

1

l

l

r r r l

r

w

w

w

γ β γ β γ β
γ β γ β γ β

γ β γ β γ β

−

−

− − − −
−

+ + +⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥+ + +⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

+ + +⎣ ⎦⎣ ⎦

�

�

� � � � �

�

W .(1) 

Here, the above check matrix W has the structural 

properties as follows: 

1) All the entries of a row (column) are distinct ele-

ments in GF(q); 

2) Each row or each column contains at most one zero 

element; 

3) For 0 1,0 , 2i r k t q≤ ≤ − ≤ ≤ −  and k t≠ , k

i
α W  

and t

i
α W  lie in at least l-1 diverse places; 

4) For 0 , 1, ,0 , 2i j r i j k t q≤ ≤ − ≠ ≤ ≤ − , k

i
α W  and 

t

j
α W  lie in at least l-1 diverse places. 

The above structural properties 3) and 4) are the con-

straint conditions on the rows of W and are respectively 

taken as the α -multiplied row-constraint conditions 1 

and 2. The proof that the basic check matrix W meets the 

α -multiplied row-constraint conditions 1 and 2 is given 

as follows.  

Proof: s is a certain column, where 0 1s l≤ ≤ − . If the 

α -multiplied row constraint condition 1 can’t be met, the 

equation k

is
wα = t

is
wα  can be got, where 0 1,i r≤ ≤ −  

0 , 2k t q≤ ≤ − , k t≠ . If and only if 
is

w =0, the former 

equation is legal. Nevertheless, each row of W has at 

most one 0 element, so k

i
α W  and t

i
α W  lie in at least 

l-1 diverse places. Thus, the α -multiplied row con-

straint condition 1 is proved out. If the α -multiplied 

row constraint condition 2 can’t be met, assuming s and 

g are two certain columns, then k t

is js
w wα α=  and 

g

k t

i jg
w wα α= , where 0 1, ,0 , 2i j r i j k t q≤ ≤ − ≠ ≤ ≤ −, ,  

0 1s g l≤ ≤ −, and s g≠ . Hence 
g

k t

is j
w wα α = t k

js ig
w wα α , 

which means that 
is jg js ig

w w w w⋅ = ⋅ . While ( -1)/q cβ α= , 

( -1)/q mγ α= and 
,

i j

i j
w γ β= + , where c m≠ , the equa-

tion ( ) ( ) ( ) ( )i s j g j s i gγ β γ β γ β γ β+ ⋅ + = + ⋅ +  can be 

obtained as a result, and then the following Eq.(2) can be 

further deduced. 

1 1 1 1 1 1

( ) ( ) ( )
q q q q q q

i s j g j s
m c m c m cα α α α α α
− − − − − −⋅ ⋅ ⋅ ⋅ ⋅ ⋅

+ ⋅ + = + ×  

1 1

( )
q q

i g
m cα α
− −⋅ ⋅

+ .                             (2) 

Successively, Eqs.(3) and (4) can be obtained. 

1 1 1 1 1 1 1 1q q q q q q q q
s j g i s i g j

c m c m c m c mα α α α
− − − − − − − −⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅

+ = + ,       (3) 

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

,

or

,

q q q q q q q q
s j s i g i g j

c m c m c m c m

q q q q q q q q
s j g j g i s i

c m c m c m c m

α α α α

α α α α

− − − − − − − −⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅

− − − − − − − −⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅

⎧ = =⎪
⎪
⎨
⎪
⎪ = =⎩

.       (4) 

  In Eq.(4), i=j or s=g. In fact, i≠j and s≠g, so the two 

equations of k t

is js
w wα α=  and k t

ig jg
w wα α=  can’t be 

got at the same time. Therefore, the α -multiplied row 

constraint condition 2 is proved out. From the above, the 

basic matrix W can meet the α -multiplied row con-

straint conditions 1 and 2 at the same time. 
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Considering the basic matrix W in Eq.(1), replace each 

element 
ij

w  of the basic matrix W by its own binary 

dispersion matrix 
( , )i jw

A . Thus, an ( 1) ( 1)r q l q⋅ − × ⋅ −  

parity check matrix H is obtained, and a version of this 

extension method is introduced in Ref.[9]. Because the 

basic matrix W can meet both the α -multiplied row 

constraint conditions 1 and 2, the check matrix H ob-

tained by the extension can also meet the row-column 

(RC) constraint condition, that is to say, there are no 

more than two “1”s in the same position in the check 

matrix H. Therefore, the tanner graph of the constructed 

QC-LDPC code has no girth-4 phenomenon, in other 

words, its girth is at least 6. The check matrix H of the 

constructed QC-LDPC code is shown as follows. 

0,0 0,1 0, 1

1,0 1,1 1, 1

1,0 1,1 1, 1

l

l

r r r l

−

−

− − − −

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

�

�

� � � �

�

A A A

A A A
H

A A A

,               (5) 

where 
ij

A  is a (q−1)×(q−1) matrix over GF(2), which 

is either zero if 
ij

w =0 or a circulant permutation matrix 

if 
ij

w ≠0. As c and m are two distinct multiplication fac-

tors of q−1, for arbitrary two integers r and l with 

,r m l c≤ ≤ , there exist l different elements over GF(q) 

in each row of the basic matrix W, and the zero element 

of row 1 is evidently in the first place. However, for 

2 i r≤ ≤ , whether row i has zero element or not is de-

termined by m/c. If m/c is a positive integer, each row of 

the basic matrix W has one zero element. Assuming the 

zero element is located in the jth ( j l≤ ) column in row i 

( 2 i r≤ ≤ ), only if 1/ 1 /i j m c− − = , we can get
,i j

w =0. 

As a consequence, H is an ( 1) ( 1)r q l q⋅ − × ⋅ −  matrix 

over GF(2), whose null space gives an approximate 

regular QC-LDPC code with row weight l-1, column 

weights r and r-1. If m/c is not a positive integer, there 

exists no zero element in the other rows except row 1. 

Consequently, H is an ( 1) ( 1)r q l q⋅ − × ⋅ −  matrix over 

GF(2), and also its null space gives an approximate 

regular QC-LDPC code with row weights l-1 and l, as 

well as column weights r and r-1. 

A novel QC-LDPC code is constructed by the pro-

posed method based on the finite field. The parameters 

are chosen as follows: q=26, m=21, c=63, r=4, l=60, 

where α  is a primitive element of GF(26), thus, 
63/21 3β α α= = , 63/63γ α α= = . Owing to 63/21=3, each 

row of the basic matrix W contains one zero element. 

Consequently, the check matrix H is a 252×3 780 matrix 

with the row weight of 59 and the two column weights of 

3 and 4, whose null space gives a approximate regular 

QC-LDPC(3 780,3 540) code with the code rate of 

93.7%. The basic simulation environment is under the 

condition of GF(2), with the binary phase shift keying 

(BPSK) modulation mode and the additive white Gaus-

sian noise (AWGN) channel with sum-product decoding 

algorithm of the soft iteration decoding algorithm at the 

16 iterations by applying the MATLAB programmer. 

No girth-4 phenomenon is found in the check matrix 

H of QC-LDPC(3 780,3 540) code through the girth-4 

testing in the simulation platform. In order to fully dem-

onstrate the error correction performance of the 

QC-LDPC(3 780,3 540) code for optical transmission 

systems, the simulation analysis of its error correction 

performance compared with those of other four codes with 

the same code rate of 93.7% is performed and studied, and 

the four codes are respectively the classic RS(255,239) 

code which is widely used in optical transmission systems 

in ITU-T G.975[13], the LDPC(32 640,30 592) code in 

ITU-T G.975.1[14], the SCG-LDPC(3 969,3 720) code 

constructed by the systematically constructed Gallager ran-

dom method in Ref.[15] and the QC-LDPC(5 334,4 962) 

code proposed in Ref.[11] based on the inverse element 

characteristics in the finite field multiplicative group. 

The simulation results are shown in Fig.1. It can be seen 

from Fig.1 that the net coding gain (NCG) of the novel 

QC-LDPC(3 780,3 540) code is respectively 0.3 dB, 

0.55 dB, 1.4 dB and 1.98 dB higher than those of the 

QC-LDPC(5 334,4 962) code, the SCG-LDPC(3 969,3 720) 

code, the LDPC(32 640,30 592) code in ITU-T G.975.1 

and the classic RS(255,239) code at the bit error rate 

(BER) of 10-7. 

 

 

Fig.1 Performance of the constructed QC-LDPC(3 780, 

3 540) code compared with other four codes with the 

same code rate of 93.7% 

 

A novel construction method of the QC-LDPC code, 

based on the subgroup of the finite field multiplicative 

group, is proposed in this paper. This construction 

method can effectively avoid the girth-4 phenomenon 

and has the advantages, such as simpler construction, 

easier implementation, lower encoding/decoding com-

plexity and better girth properties, as well as more flexi-

ble adjustment for the code length and code rate. Ac-

cording to the characteristics of optical transmission sys-

tems, the novel QC-LDPC(3 780,3 540) code with the 

code rate of 93.7% is constructed by this novel method. 

The simulation results show that the constructed 

QC-LDPC(3 780,3 540) code has excellent error correc-

tion performance. As a result, the proposed construction 

method of the QC-LDPC code can be more suitable for 

optical transmission systems. 
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